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Abstract.

Background: Primary outcome measure in the clinical trials of disease modifying therapy (DMT) drugs for Alzheimer’s
disease (AD) has often been evaluated by Clinical Dementia Rating sum of boxes (CDRSB). However, CDR testing requires
specialized training and 30-50 minutes to complete, not being suitable for daily clinical practice.

Objective: Herein, we proposed a machine-learning method to estimate CDRSB changes using simpler cognitive/functional
batteries (Mini-Mental State Examination [MMSE] and Functional Activities Questionnaire [FAQ]), to replace CDR testing.
Methods: Baseline data from 944 ADNI and 171 J-ADNI amyloid-positive participants were used to build machine-learning
models predicting annualized CDRSB changes between visits, based on MMSE and FAQ scores. Prediction performance
was evaluated with mean absolute error (MAE) and R? comparing predicted to actual ACDRSB/Ayear. We further assessed
whether decline in cognitive function surpassing particular thresholds could be identified using the predicted ACDRSB/Ayear.
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Results: The models achieved the minimum required prediction errors (MAE < 1.0) and satisfactory prediction accuracy
(R? > 0.5) for mild cognitive impairment (MCI) patients for changes in CDRSB over periods of 18 months or longer.
Predictions of annualized CDRSB progression > 0.5, >1.0, or >1.5 demonstrated a consistent performance (i.e., Matthews
correlation coefficient > 0.5). These results were largely replicated in the J-ADNI case predictions.

Conclusions: Our method effectively predicted MCI patient deterioration in the CDRSB based solely on MMSE and FAQ
scores. It may aid routine practice for disease-modifying therapy drug efficacy evaluation, without necessitating CDR testing

at every visit.

Keywords: Alzheimer’s disease, clinical dementia rating, disease-modifying therapy, efficacy assessment, machine-learning,

prediction

INTRODUCTION

Alzheimer’s disease (AD) is a major cause
of dementia in the elderly [1]. Several anti-
amyloid drugs, such as aducanumab, lecanemab,
and donanemab, have been developed as promising
disease-modifying therapy (DMT) drugs for AD [2].
Clinical trials have demonstrated that these drugs
can suppress cognitive decline in patients with mild
cognitive impairment (MCI) or early AD to a cer-
tain extent [3, 4]. Notably, lecanemab received FDA
approval in July 2023 [5], and it was also approved in
Japanin September 2023 [6] and in mainland China in
January 2024 [7]. DMT drugs for AD are thus moving
beyond the clinical trial stage and are just beginning
to be applied in real-world practice, raising expecta-
tions but also concerns about the preparedness for the
treatment [8].

In real-world settings, the efficacy of DMT drugs
may not consistently match the 100% efficacy
observed in clinical trials for all patients. This is true
when the patient’s background is different from that
of the RCT population [5]. The efficacy of DMT
drugs for patients who started treatment for their
mild stage of dementia but progressed to moder-
ate dementia during the course of treatment remains
uncertain. Additionally, patients undergoing DMT
treatment are at risk of developing adverse effects,
including Amyloid-Related Imaging Abnormalities
(ARIA) [5, 9, 10], which may occasionally necessi-
tate the intermittent cessation of treatment. Therefore,
when administering DMT drugs in real-world set-
tings, it is crucial for clinicians to periodically assess
their safety as well as clinical progression over time.
While adverse effects such as ARIA can be evaluated
using scheduled brain MRI scans [5, 11], practical
challenges exist when assessing clinical progression.
In many clinical trials of these DMT drugs, the
primary outcome measure evaluating clinical pro-
gression is the Clinical Dementia Rating sum of

boxes (CDRSB), which is derived from the Clinical
Dementia Rating (CDR) test that evaluates the clin-
ical severity of dementia [12]. One problem is that
CDR testing requires special training for raters, and
it takes 30-50 min to complete the assessment for a
single patient. CDR testing is not as straightforward
as Mini-Mental State Examination (MMSE) testing
in regular clinical practice [13]. Therefore, the need
for adequate efficacy assessment requiring CDR test-
ing for every routine efficacy evaluation, may act as
a barrier to the widespread adoption of DMT drugs.
To address this problem, we propose a machine-
learning approach that estimates the change in
CDRSB using simpler cognitive/functional batteries,
namely: the MMSE and Functional Activities Ques-
tionnaire (FAQ). In this study, addressing a clinical
scenario in which clinicians aim to assess the effi-
cacy of DMT drugs for their individual patients, we
specifically focus on predicting the rate of change
in the CDRSB, specifically the annualized changes,
rather than solely assessing the CDRSB scores them-
selves. This approach acknowledges that monitoring
the disease’s progression over time is critical for
assessing clinical status and roughly inferring treat-
ment efficacy on an individual basis. We consider that
understanding the annualized changes in the CDRSB
may provide a more clinically intuitive measure com-
pared to the raw CDRSB scores, thus enhancing the
practical application of our method in real-world clin-
ical settings. The proposed method is intended to
replace CDR testing, thereby facilitating the assess-
ment of DMT drug efficacy in clinical practice.

METHODS
Study purpose
This retrospective study used pre-existing data

and was approved by a local ethics committee
[ID:11754-(1)]. We aimed to introduce a machine-
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learning approach suited for future clinical settings,
to aid physicians in assessing the efficacy of DMT
in patients who are receiving or have previously
received DMT drugs. The anticipated clinical sce-
nario is as follows: a patient meets the eligibility
criteria for DMT drugs (e.g., evidence of amyloid
accumulation in the brain while maintaining a certain
cognitive function level). The patient was scheduled
for periodic administration of a DMT drug at an out-
patient clinic. While safety assessments especially
concerning ARIA, were conducted at each clinic
visit; efficacy was evaluated on a set schedule, such
as once every six months or annually. In this con-
text, our goal was to estimate the degree of change in
CDRSB scores after each efficacy evaluation period.

Used data

We used data from the Alzheimer’s Disease Neu-
roimaging Initiative (ADNI) study and the Japanese
Alzheimer’s Disease Neuroimaging Initiative (J-
ADNI) study. ADNI study is a comprehensive
longitudinal observational research initiative that
began in 2004, gathering data from over 2,000 par-
ticipants, including those classified with cognitively
normal (CN), MCI, and dementia [14]. J-ADNI study
initiated in Japan in 2008, follows a protocol nearly
identical to that of the ADNI and has gathered data
from approximately 500 participants [15]. We down-
loaded the data in June 2023, with permission from
the study teams. Participants were included based on
the following criteria: evidence of positive amyloid
accumulation in the brain, as confirmed by either
cerebrospinal fluid (CSF) analysis or amyloid PET
(with tracers: florbetapir or florbetaben for ADNI and
PiB for J-ADNI), a minimum of two visits to the
study site, and a CDR-global score (CDR-GS) of 1
or less at baseline. A CDR-GS of 0 indicates CN or
subjective memory complaints (SMC), a CDR-GS
of 0.5 generally corresponds to early/late MCI but
includes a fraction of mild AD (e.g., approximately
15% among ADNI cases with CDR-GS 0.5 at base-
line), and a CDR-GS of 1 or higher corresponds to
AD dementia [12]. Amyloid accumulation was con-
sidered positive if the participant met any one of the
following criteria: for ADNI data, a baseline CSF
AB42 level <192 [16]; an SUVR > 1.11 in florbetapir
PET, oran SUVR > 1.08 in florbetaben PET [17]; for
J-ADNI data, a CSF A level <333 [15] or a positive
result in visual assessment from PiB PET. Our anal-
ysis only considered participants displaying positive
AP accumulation at their baseline evaluation.

The following covariables were incorporated into
our analysis: age at the time of study participation;
sex (binary: male or female); years of education;
CDR-GS and CDRSB at baseline and subsequent
visits; diagnosis at baseline (denoted as “DX_bl” in
the original dataset); marital status (binary: married
or not); cohort details (binary: ADNI or J-ADNI);
APOE genotype (numerically represented by the
count of &4 alleles); MMSE scores at baseline and
subsequent visits; and FAQ scores at baseline and
subsequent visits. The CSF p-tau status at base-
line (e.g., with/without elevation) was not considered
because of the absence of a well-defined threshold in
the J-ADNI dataset.

Data preprocessing

Now we revisit the aforementioned assumed clin-
ical scenario. The regimen administered differed
depending on the type of DMT drug administered or
the patient characteristics. Some patients could have
undergone treatment continuously for three years or
longer, whereas others could have been treated for
only one or two years or less. This variability neces-
sitates the evaluation of efficacy during and after the
administration period. Thus, it would be advanta-
geous to estimate the degree of change in CDRSB
scores over an arbitrary time span rather than being
restricted to every 6 or 12 months.

Consequently, we obtained paired data consisting
of any two observational visits from the longitudinal
data of the visits of each participant. For illustra-
tion (see Fig. 1A), consider a participant with MCI
at baseline who attended the ADNI study site five
times in total (e.g., at baseline (0 months), 6 months,
12 months, 18 months, and 24 months). From this
participant’s longitudinal data, we could formulate
10 “previous — current” visit pairs (i.e., 0-6, 0—12,
0-18, 0-24, 6-12, 6-18, 6-24, 12-18, 12-24, and
18-24 months). The intervals between these visit
pairs were 6, 12, 18, 24, 6, 12, 18, 6, 12, and 6
months, respectively. We set the maximum time span
between visits at 24 months (or 2 years) and capped
the last possible visit at 36 months from the baseline.
The paired data were then used as inputs for machine
learning.

The target variable we sought to predict using
machine-learning was the annualized difference in
CDRSB between “previous” and “current” visits for
each pair (denoted as ACDRSB/Ayear in Fig. 1A):
the ACDRSB/Ayear within each paired data is cal-
culated using the formula:
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Fig. 1. Outline of target variable and data workflow. We created pairs using two arbitrary observational visits from the longitudinal
visit data for each participant. The paired data were then used as observations for machine learning. For example, in this figure (A),
the visit at 24 month is designated as the ‘current’ visit, and the visit at 6 months as the ‘previous’ visit, making the period between
these visits 18 months. The ACDRSB/Ayear for this paired data is calculated using the formula: ACDRSB/Ayear = (CDRSBcyrrent —
CDRSB previous)/{(Month cyrrens — Month previous)/12}. The generated paired data were utilized for both training and validation of the
machine-learning model. Given that multiple pairs of data arose from a single participant’s longitudinal data, we initially randomly par-
titioned all participants into training and validation groups at a 2: 1 ratio (B). Paired observation data derived from the training group
were denoted as the training dataset, whereas paired observation data from the validation group formed the validation dataset. The training
dataset was resampled via replacement. Training and hyperparameter tuning were performed using the R package caret. Subsequently, the
model performance was assessed using the validation dataset. This process of data splitting, resampling, model training, and validation was
iteratively executed 1,000 times with varying random seeds. CDRSB, Clinical Dementia Rating Sum of Boxes; ADNI, Alzheimer’s Disease
Neuroimaging Initiative; J-ADNI, Japanese Alzheimer’s Disease Neuroimaging Initiative.

Machine-learning architecture

ACDRSBAyear = (CDRSB ysreni—
CDRSBpreviouS)/{(Monthcurrent - Monthprevious)/lz}

All data processing and analyses were conducted
using R software. The generated paired data were
utilized for both training and validation of the

We used 122 features as explanatory variables (Sup- machine-learning model. Given that multiple pairs

plementary Table 1). These consisted of: age at the
current visit; sex; number of years of education; mari-
tal status; APOE genotype; MMSE scores at baseline,
previous visit, and current visit; and FAQ scores at
baseline, previous visit, and current visit. Both the
MMSE and FAQ scores encapsulated the total and
individual sub-item scores. Neither the CDRSB nor
the CDR-GS from any visit were included, as their
inclusion would detract from the practical applicabil-
ity of the proposed approach.

of data arose from a single participant’s longitudinal
data, we initially randomly partitioned all partici-
pants into training and validation groups in a 2:1
ratio (see Fig. 1B). Paired observation data derived
from the training group were denoted as the train-
ing dataset, whereas paired observation data from
the validation group formed the validation dataset.
The training dataset was resampled via replacement.
Model training employed the “regularized general-
ized linear regression” regressor (specifically, we
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Fig. 2. Prediction performances in MAE and R?. We assessed the performance of predicting the annualized change in CDRSB, defined as
ACDRSB/Ayear. The prediction error (MAE; see (A) for ADNI participants and (C) for J-ADNI participants) met the minimum required
level (i.e., below +0.5 CN, +1.0, and +1.5 for AD participants) for predicting CDRSB score changes in patients diagnosed with MCI or AD
at baseline, especially for periods spanning 18 months or longer between visits. However, the predictions for CN participants, especially
those from the J-ADNI cohort, were not as promising. Regarding prediction accuracy, the R? values (illustrated in (B) for ADNI participants
and (D) for J-ADNI participants) were substantially unsatisfactory in the CN participants, displaying a low median R? and broad 95% CI
encompassing 0. Moreover, participants also exhibited relatively poor performance, with a 95% CI for R? verging at 0. In contrast, participants
with MCI at baseline consistently showed relatively better performance in terms of R%.MAE, mean absolute error; CDRSB, Clinical Dementia
Rating Sum of Boxes; MMSE, Mini-Mental State Examination; FAQ, Functional Activities Questionnaire; AD, Alzheimer’s disease; MCI,
mild cognitive impairment; CN, cognitively normal; CI, confidence interval; ADNI, Alzheimer’s Disease Neuroimaging Initiative; J-ADNI,
Japanese Alzheimer’s Disease Neuroimaging Initiative.

used Elastic Net), abbreviated as “glmnet.” Training
and hyperparameter tuning with repeated cross-
validation were performed using the R package caret.
Subsequently, the model performance was assessed
using the validation dataset. This process of data split-
ting, resampling, model training, and validation was
iteratively executed 1,000 times with varying random
seeds. The aggregate prediction performance met-
rics were collated and presented as medians and 95%
confidence intervals (CI).

Evaluation of prediction performance

Prediction accuracy was gauged using the mean
absolute error (MAE) and R-squared (R?) values,
comparing the predicted ACDRSB/Ayear against
the actual ACDRSB/Ayear across all validation
data. The MAE is defined by the following for-
mula: MAE = %ZLI | predicted — actual|. Since
AD participants at baseline may experience a faster

cognitive decline than that experienced by CN partici-
pants [18], the expected ACDRSB/Ayear may differ
depending on the baseline status. Furthermore, the
trajectory of CDRSB may not be linear over time.
To address this, we visualized predictive performance
according to baseline cognitive status (as indicated by
baseline diagnosis [see Figs. 2 and 3]), interval length
between visits, and originating cohort (i.e., ADNI or
J-ADNI).

Regarding the minimum acceptable level of pre-
diction error, we evaluated whether the upper bound
of the 95% ClI for the obtained MAE was below +0.5
for CN cases, +1.0 for MCI cases, and +1.5 for AD
cases. These threshold values are derived from earlier
research which indicated that clinically meaningful
deterioration in CDRSB was +0.54 from the previous
visit (spanning an average of 1.15 years) for CN par-
ticipants, +0.98 for MCI participants, and +1.63 for
AD participants [19]. If the MAE of a model exceeded
these thresholds, it could not be used to detect clin-
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Table 1
Characteristics of the included participants
Cohort ADNI J-ADNI
Total Participants N=944 N=171
Age at baseline Median 74.1 (IQR: 69.2~78.6) Median 74 (IQR: 68.7~77.7)
Sex Male 515: Female 429 Male 84: Female 87

2=23:1=83:0=65
AD 76 : MCI 76 : CN 18
1=22:0.5=130:0=19
Median 2.0 (IQR: 1.0~3.5)
Median 25 (IQR: 23~27)

APOE &4 allele[s]
Diagnosis at baseline
CDR-GS at baseline
CDRSB at baseline
MMSE at baseline

2=144:1=453:0=347
AD 237 : MCI 477 : CN 230
1=122:0.5=590:0=232
Median 1.5 (IQR: 0.5~3)
Median 27 (IQR: 25~29)
FAQ at baseline Median 2 (IQR: 0~8) Median 5 (IQR: 1~9.5)
Marital status Married 743: Not 201 Married 149: Not 22
CDR-GS, Clinical Dementia Rating Global score; CDRSB, Clinical Dementia Rating Sum of Boxes;
MMSE, Mini-Mental State Examination; FAQ, Functional Activities Questionnaire; AD, Alzheimer’s
disease; MCI, mild cognitive impairment; CN, cognitively normal; IQR, interquartile range; ADNI,
Alzheimer’s Disease Neuroimaging Initiative; J-ADNI, Japanese Alzheimer’s Disease Neuroimaging Ini-

tiative.

ically significant changes. R>=0.5 was used as an
approximate measure of good prediction accuracy.

Evaluating clinical meaningful change

One crucial practical consideration when esti-
mating ACDRSB/Ayear over a specific period is
determining a decline in cognitive function surpass-
ing a particular threshold. As previously described,
setting the ACDRSB/Ayear threshold at +0.5 for CN,
+1.0 for MCI, and +1.5 for AD can enable machine-
learning models to discern whether a patient has
undergone clinically significant deterioration since
their last visit.

Prediction accuracy was appraised using the
Matthews correlation coefficient (MCC)- ranging
between —1 and +1, alongside the positive predictive
value (PPV) and negative predictive value (NPV).
The MCC is similar to the Pearson correlation in
terms of its interpretation and is considered supe-
rior to the F1 score or accuracy in evaluating binary
classification tasks [20]. An MCC of O corresponds
to random prediction, —1 indicates perfect inverse
prediction, and 1 points to an entirely accurate predic-
tion. We used the MCC=0.5 as a rough measure of
good prediction accuracy. PPV and NPV denote the
proportions (ranging from zero to one) of genuinely
positive or negative outcomes relative to all positively
or negatively predicted instances, respectively.

We adjusted the threshold levels to +0.5, +1.0,
+1.5, and +2.0 for sensitivity analyses. Similar to the
MAE and R2 metrics, we visualized the MCC, PPV,
and NPV results based on baseline cognitive status,
interval between visits, and the originating cohort.

RESULTS
Overview

We included 1,115 unique participants: 944 from
the ADNI study and 171 from the J-ADNI study. The
basic characteristics of the participants are summa-
rized in Table 1. From their longitudinal data, we
obtained 7,282 original paired observations, 5,928
from the ADNI study and 1,354 from the J-ADNI
study.

The top-20 predictive variables ranked by average
variable importance are shown in Supplementary Fig-
ure 1. The total FAQ score during the current visit
was the most important variable, followed by the total
MMSE score at the current visit. APOE genotype was
at the 109th percentile of all 122 variables.

Prediction error and accuracy

We then assessed the performance of predict-
ing the annualized change in CDRSB, defined as
ACDRSB/Ayear. The prediction error (MAE; see
Fig. 2A for ADNI participants and Fig. 2C for J-
ADNI participants) met the minimum required level
(i.e., below +0.5 for CN, +1.0 for MCI, and +1.5
for AD participants) for predicting CDRSB score
changes in patients diagnosed with MCI or AD at
baseline, especially for periods spanning 18 months
or longer between visits. However, the predictions for
CN participants, especially those from the J-ADNI
cohort, were not as promising.

Regarding prediction accuracy, the R? values
(illustrated in Fig. 2B for ADNI participants and
Fig. 2D for J-ADNI participants) were substantially
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Fig. 3. Prediction performances in participants with MCI at baseline. Based on results in Fig. 2, we focused on predicting CDRSB change in
participants with MCI at baseline, to periods spanning 18 months or longer between visits. We obtained MCC (A, D), PPV (B, E), and NPV
(C, F) metrics. In A-C, the period between visits is 18 months, and in D-F, it extends to 24 months. Notably, irrespective of the threshold
levels on the x-axis, the overall performance, as indicated by MCC, appears relatively stable. Conversely, the PPV and NPV show contrasting
variations in their 95%CI ranges based on the x-axis threshold level. For example, when the threshold is set at 1.5 or 2.0, the 95% CI for
PPV broadens, while that for NPV tightens. Specifically for MCI cases, thresholds for ACDRSB/Ayear exceeding 0.5, 1.0, or 1.5 seem
to be the most appropriate threshold, offering reliable performance across MCC, PPV, and NPV. MCC, Matthews correlation coefficient;
PPV, positive predictive value; NPV, negative predictive value; CDRSB, Clinical Dementia Rating Sum of Boxes; MCI, mild cognitive
impairment; ADNI, Alzheimer’s Disease Neuroimaging Initiative; J-ADNI, Japanese Alzheimer’s Disease Neuroimaging Initiative.

unsatisfactory in the CN participants, displaying a
low median R? and broad 95% CI encompassing
0. Moreover, participants also exhibited relatively
poor performance, with a 95% CI for R? verging
at 0. In contrast, participants with MCI at baseline
consistently showed relatively better performance
in terms of R?, nearly above 0.5: median 0.491
(95%CT.0.306-0.662) for ADNI cases and 0.436
(95%CT:0.141-0.683) for J-ADNI cases for periods
spanning 18 months between visits. For periods span-
ning 24 months between visits, the median was 0.580
(95%CI:0.428-0.710) for the ADNI cases and 0.618
(95%CTI.:0.247-0.808) for the J-ADNI cases.

Predicting clinical significant change

Based on these results, we focused on predict-
ing CDRSB changes in participants with MCI at
baseline for periods spanning 18 months or longer
between visits. The MCC, PPV, and NPV metrics
were obtained, as shown in Fig. 3. In Fig. 3A-C,

the period between visits was 18 months, and in
Fig. 3D-F, it extended to 24 months. Notably, irre-
spective of the threshold levels on the x-axis, the
overall performance, as indicated by MCC, appeared
to be relatively stable. The median MCC was larger
than 0.5, in ADNI and largely the same in J-ADNI; for
ADNI cases, the median MCC was 0.510 for thresh-
old at >0.5, 0.513 for threshold at >1.0, and 0.501
for threshold at >1.5. For J-ADNI cases, the median
was 0.461 for the threshold at >0.5, 0.457 for the
threshold at >1.0, and 0.552 for the threshold at >1.5.

Meanwhile, PPV and NPV showed contrasting
variations in their 95% CI ranges based on the x-
axis threshold level. For example, when the threshold
was set at >2.0, the 95% CI for the PPV broadened,
whereas it increased for the NPV. Conversely, when
the threshold was set to >0.0, the 95% CI for the PPV
tightened, whereas that for the NPV broadened. For
thresholds at >0.5, >1.0, and > 1.5, PPV had 0.6-0.7
as median and NPV 0.8 has median 0.8 both for ADNI
and J-ADNI cases.
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Taken together, specifically for MCI cases, thresh-
olds for ACDRSB/Ayear exceeding 0.5, 1.0, or 1.5
are the appropriate threshold, offering a fair perfor-
mance reliably across MCC, PPV, and NPV.

DISCUSSION

In this study, we proposed a machine-learning
approach to predict changes in the CDRSB using
primarily MMSE and FAQ scores. Our results
demonstrated that our proposed models met the min-
imum required level of prediction errors (i.e., MAE)
and displayed a satisfactory level of prediction accu-
racy (i.e., R?) for MCI patients at baseline, provided
that the prediction pertained to changes in the CDRSB
over a period of 18 months or longer between visits.
Moreover, predictions regarding annualized progres-
sion in CDRSB > 0.5, >1.0, or >1.5 consistently
showed good predictive performance. These findings
suggest that our proposed approach could be practi-
cally valuable in predicting whether MCI patients at
baseline have experienced clinically significant dete-
rioration in the CDRSB in subsequent visits, based
solely on MMSE and FAQ scores. This has the poten-
tial to be widely adopted in daily practice to evaluate
the efficacy of DMT drugs without requiring CDR
testing at every visit.

In this study, we used data from the ADNI and
J-ADNI studies, both of which are observational stud-
ies. This means that our machine-learning models
were based on non-interventional study data, which
were then applied to clinical scenarios in which
patients were treated with DMT drugs. We believe
this approach is justifiable because, in this study,
we primarily focused on cognitive and functional
scales (specifically, symptomatic changes along the
disease course) rather than changes in AD pathologi-
cal biomarkers during the longitudinal period, which
would be altered by the administration of DMT drugs.

We now discuss in detail how our approach may
benefit the treatment of individual patients using
DMT drugs in areal-world setting. We made assump-
tions based on scenarios in which patients treated
with DMT drugs periodically underwent efficacy
assessments at outpatient clinics. In the Clarity-AD
study, a phase-3 trial that demonstrated the efficacy of
lecanemab in reducing cognitive decline in MCI and
mild AD patients [3], the change in CDRSB was+1.21
over 18 months for the group treated with lecanemab,
and +1.66 > 18 months for the group treated with
placebo. This equates to changes of +0.8/year and

+1.1/year in CDRSB, respectively. However, in real-
world settings, not every patient receiving lecanemab
will benefit from such a decrease in cognitive dete-
rioration, and some may even progress faster than
expected despite treatment. At this juncture, if we
determine a certain threshold level of change in the
CDRSB as an efficacy benchmark prior to starting
treatment using our models, we can assess in individ-
ual patients whether the drug operates above or below
the average efficacy levels reported in clinical trials.
For example, drawing from the Clarity-AD study [3],
if we set the threshold at >1/year, it can be inferred
that MCI patients receiving lecanemab and predicted
by our model to have a CDRSB change of more
than 1/year might be experiencing efficacy below the
trial’s average level of +0.8/year. Conversely, since
the NPV is as good as the PPV, we can also say that
MCI patients treated with lecanemab and not pre-
dicted by the model to undergo a CDRSB change
of more than 1/year might be experiencing efficacy
comparable to or better than the average level (i.e.,
+0.8/year) observed in the clinical trial.

Referring to TRAILBLAZER-ALZ?2 study [4], a
phase-3 clinical trial that investigated the efficacy and
safety of donanemab in early AD patients including
MCI and mild dementia, observed change in CDRSB
in donanemab and placebo arms were +1.17/year and
+1.65/year, respectively. If we set the threshold at
>1.5/year, it can be inferred that MCI patients receiv-
ing donanemab, predicted by the model to have a
CDRSB change of more than 1.5/year, might experi-
ence efficacy below the average level of efficacy (i.e.,
+1.17/year) observed in the clinical trial.

Additionally, the prediction model could poten-
tially serve as a clinical tool for determining
premature discontinuation of the regimen in certain
patients, although there are no definitive criteria for
deciding when to discontinue DMT treatment. For
example, because of the high medical costs associ-
ated with DMT medications, the inconvenience of
frequent outpatient clinic visits, or excessive con-
cerns about adverse effects, some patients may want
premature discontinuation of DMT drugs if they do
not perceive adequate efficacy.

The potential usefulness of our proposed approach
is expected to be reflected in clinical practice in Japan.
Specifically, following the approval of lecanemab
in Japan in September 2023, the Clinical Optimal
Use Guideline (OUG) for lecanemab in Japan [21]
was published in December 2023. The OUG requires
measuring the CDR or other corresponding measures
for all patients seeking lecanemab treatment as part
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of the eligibility criteria (i.e., CDR-GS 0.5 or 1). It
also requires that every patient receiving lecanemab
be monitored every six months to track their clinical
progression. Additionally, the OUG calls for consid-
ering the discontinuation of treatment for patients
who are unlikely to benefit from it. We believe that
our study will also be useful in providing an alter-
native to CDR testing for the periodic monitoring of
Japanese patients receiving lecanemab treatment.
Our study had several limitations as listed below.

1. The ACDRSB/Ayear is obtained by dividing
ACDRSB by the period between visits within
a paired observation. This calculation assumes
that the longitudinal change in CDRSB is lin-
ear. Therefore, we restricted the period between
visits to a maximum of 2 years.

2. The regressor used in our model training was
the regularized GLM, which exhibited a rel-
atively high-performance accuracy. However,
not all regressor types have been examined to
date. Therefore, there may be opportunities to
improve the prediction accuracy using alterna-
tive algorithms, such as gradient boosting.

3. While our models can assess whether an indi-
vidual receiving a DMT drug experiences
cognitive changes above or below the average
progression reported in the active arm of clini-
cal trials of the drug, we cannot determine the
precise efficacy of the drug.

4. We could not include baseline p-tau status,
corresponding to the “T” in the A/T/N classifi-
cation [22], as we used both ADNI and J-ADNI
datasets. Incorporating baseline T status in the
model might increase prediction accuracy, as it
is known to be one of the prognostic factors of
cognitive decline, as measured in the CDRSB
[23].

5. In applying machine-learning models derived
from observational study data to clinical sce-
narios in which patients were treated with DMT
drugs, we assumed that because of the low
frequency of severe symptomatic ARIA, the
influence of ARIA on cognitive and functional
scales in the medium to long term was virtually
negligible at the population level. In short, our
models should not be applied to patients who
develop symptomatic ARIA and do not recover
completely.

6. The model equation we used for regressor - reg-
ularized generalized linear regression is more
complicated than that of conventional linear

regression to calculate manually, so that we have
not presented final specific formula to be used
for real-world calculation by directly applying
actual patient scores in clinical settings. Instead,
in the near future, we would like to release some
kind of interactive online application that can be
used easily.

In the future, we are considering validating
the performance and feasibility of our proposed
method using real-world data. Specifically, regard-
ing lecanemab in Japan, post-marketing surveillance
is mandated for all patients treated with lecanemab
[21]. The development of ARIA, APOE genotype,
comorbidities, concurrent medications, and clini-
cal measures including MMSE, CDRSB, and other
scales have been discussed as some of the variables
to be collected within the surveillance [24]. This sug-
gests that there may be opportunities to validate our
approach in the future. Although it is currently uncer-
tain whether the APOE genotype will be available
from all patients in the surveillance, the absence of
the APOE genotype may not critically impact the
performance of our model, given that the variable
importance of the APOE genotype was at the 109th
percentile of all 122 variables (Supplementary Fig-
ure 1). Furthermore, incorporating the influence of
comorbidities, concurrent medications, or adverse
events including ARIA into the prediction of clinical
progression might improve our model and optimize
it for real-world application.

In conclusion, our study introduced a machine-
learning approach to predict changes in the CDRSB
using primarily the MMSE and FAQ scores. Our
approach consistently performed well in predict-
ing whether patients with MCI at baseline would
experience clinically significant deterioration in the
CDRSB over a period of 18 months or longer. A
notable advantage of our model is its simplicity;
it only requires the MMSE and FAQ scores along
with baseline features. Thus, it has the potential for
widespread use in daily practice to evaluate the effi-
cacy of DMT drugs without requiring CDR testing at
every visit.
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